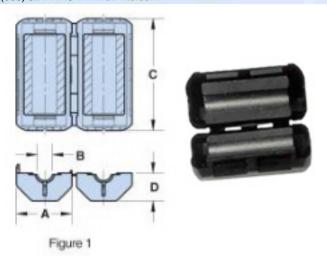


Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com


Fair-Rite Product's Catalog Part Data Sheet, 0461164951 Printed: 2010-11-09

Part Number: 0461164951

Frequency Range: Higher Frequencies 200-1000 MHz (61 material)

Description: 61 ROUND CABLE CORE ASSEMBLY

Application: Suppression Components

Where Used: Cable Component

Part Type: Round Cable Snap-Its

Mechanical Specifications

Weight: 17.000 (g)

Part Type Information

Round cable snap-its can easily accommodate round cables or bundled wires with diameters from 2.5 mm (.100") to 25.4 mm (1.000"). These assemblies are available in four ferrite material classes to suppress differential or common-mode conducted EMI from 1 MHz into the GHz region. The polypropylene cases are meeting the RoHS restrictions of hazardous substances and have a flammability rating of UL94 V-0.

- -Round cable snap-it assemblies are controlled for impedances only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies. The minimum guaranteed impedance is the listed impedance less 20%.
- -Single turn impedance tests for the 31, 43 and 44 material are performed on the 4193A Vector Impedance Analyzer. The 61 material parts are tested on the 4191A RF Impedance Analyzer. Cores are tested with the shortest practical wire length.
- -Many of the snap-it parts have round core equivalents. See Round Cable EMI Suppression Cores section of our catalog.
- -'B' Dimension is the core Dimension.
- -Round Cable Snap-it Kits are available for each of the four suppression materials. 31 Snap-lt Kit (0199000030), 43 Snap-lt Kit (0199000031), 46 Core and Snap-lt Kit (0199000032) and 61 Snap-lt Kit (0199000033).
- -Explanation of Part Numbers: Digits 1 & 2 = product class and 3& 4 = material grade.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 0461164951

Printed: 2010-11-09

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	17.30	-	0.680	-
В	5.10	1	0.201	-
С	38.20	1	1.420	-
D	8.40	1	0.331	-
Е	ı	1	-	-
F	ı	1	-	-
G	ı	1	-	-
Н			-	-
J			-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)			
100 MHz	215		
250 MHz+	325		
500 MHz+	385		
1000 MHz	332		

Electrical Properties	

Land Patterns

V	W	Х	Υ	Z
-	-	-		-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∑I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{l} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 0461164951 Printed: 2010-11-09

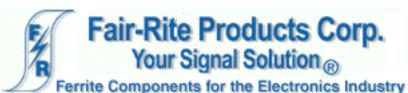
Ferrite Material Constants

Specific Heat 0.25 cal/g/°C

Thermal Conductivity 10x10⁻³ cal/sec/cm/°C

Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Tensile Strength 4.9 kgf/mm²


Compressive Strength 42 kgf/mm²

Young's Modulus 15x10³ kgf/mm²

Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

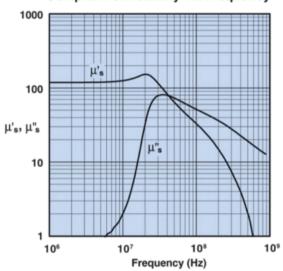
A high frequency NiZn ferrite developed for a range of inductive applications up to 25 MHz. This material is also used in EMI applications for suppression of noise frequencies above 200 MHz.

EMI suppression beads, beads on leads, SM beads, wound beads, multi-aperture cores, round cable snap-its, rods, antenna/RFID rods, and toroids are all available in 61 material.

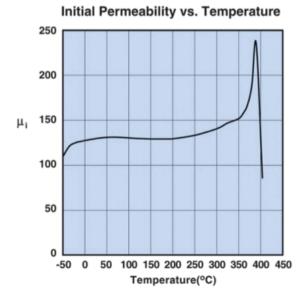
Strong magnetic fields or excessive mechanical stresses may result in irreversible changes in permeability and losses.

Fair-Rite Product's Catalog Part Data Sheet, 0461164951

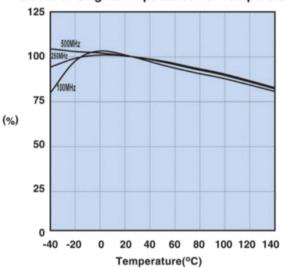
Printed: 2010-11-09



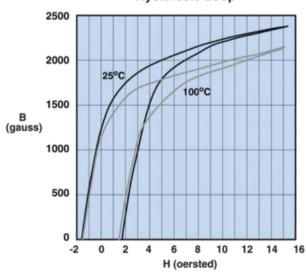
61 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ_{i}	125
Flux Density	gauss	В	2350
@ Field Strength	oersted	н	15
Residual Flux Density	gauss	B,	1200
Coercive Force	oersted	He	1.8
Loss Factor	10-6	tan δ/μ _i	30
@ Frequency	MHz		1.0
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.10
Curie Temperature	°C	Tc	>300
Resistivity	Ωcm	ρ	1x10 ⁸

Complex Permeability vs. Frequency


Measured on a 19/10/6mm toroid using the HP 4284A and the HP 4291A.

the fill 4204A and the fill 4201A.

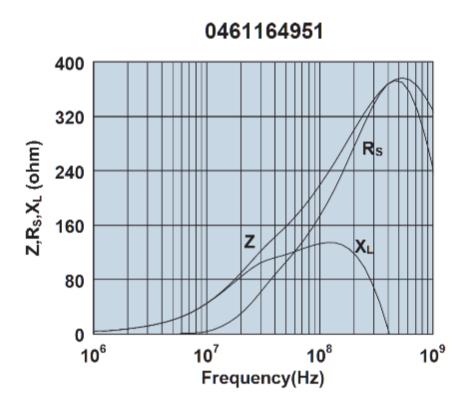

Measured on a 19/10/6mm toroid at 100kHz.

Percent of Original Impedance vs. Temperature

Measured on a 2661000301 using the HP4291A.

Hysteresis Loop

Measured on a 19/10/6mm toroid at 10kHz.


Fair-Rite Product's Catalog Part Data Sheet, 0461164951 Printed: 2010-11-09

Impedance, reactance, and resistance vs. frequency.